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Review
Achieving malaria elimination requires targeting the
human reservoir of infection, including those with
asymptomatic infection. Smear-positive asymptomatic
infections detectable by microscopy are an important
reservoir because they often persist for months and
harbor gametocytes, the parasite stage infectious to
mosquitoes. However, many asymptomatic infections
are submicroscopic and can only be detected by molec-
ular methods. Although there is some evidence that
individuals with submicroscopic malaria can infect mos-
quitoes, transmission is much less likely to occur at
submicroscopic gametocyte levels. As malaria elimina-
tion programs pursue mass screening and treatment of
asymptomatic individuals, further research should strive
to define the degree to which submicroscopic malaria
contributes to the infectious reservoir and, in turn, what
diagnostic detection threshold is needed to effectively
interrupt transmission.

Active surveillance targeting asymptomatic malaria for
elimination
Over the past 5–10 years, increased international funding,
political will, and a new generation of malaria diagnostic
and treatment tools has reignited efforts to achieve malar-
ia elimination. As of 2012, 34 of the 99 countries where
malaria is endemic have adopted strategies to become
malaria-free within the next two decades [1]. At the heart
of these strategies is a shift in focus from early diagnosis
and treatment of those who are symptomatic to active
surveillance for and treatment of every case, including
those who are asymptomatic [2,3].

Asymptomatic malaria is often not defined rigorously,
but generally refers to an individual harboring blood-stage
malaria parasites who has not experienced fever or other
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symptoms that would lead the individual to seek treat-
ment. In most malaria endemic settings, asymptomatic
infections outnumber symptomatic infections [4–6]. It fol-
lows that the success of elimination strategies relies on the
ability to find and treat the asymptomatic reservoir.

However, the lack of rigorous definitions for asymptom-
atic malaria has clouded research supporting this goal
[4,7]. Parasitemia in an asymptomatic infection can be
visible by blood smear or submicroscopic and only detect-
able by molecular methods. The increasing use of methods
that detect parasite DNA, including PCR and loop-medi-
ated isothermal amplification (LAMP), has uncovered
large numbers of asymptomatic individuals with submi-
croscopic malaria. It is generally assumed that this trans-
lates into a greatly expanded infectious reservoir. But most
studies on the reservoir potential of asymptomatics have
been done on microscopically patent asymptomatics. Ac-
cordingly, the role of submicroscopic parasitemia in ongo-
ing transmission in most settings is unclear.

Here, we examine different lines of research to address
the question of whether those with submicroscopic malaria
substantially contribute to transmission. We highlight the
heterogeneity of the asymptomatic malaria reservoir, what
mosquito studies have shown about determinants of hu-
man-to-mosquito infectivity, the limited studies on the
infectivity potential of submicroscopic malaria, and the
lack of data available from ongoing elimination efforts.

A better understanding of the role of submicroscopic
malaria as part of the transmission reservoir can shape
how active surveillance is used to pursue malaria elimina-
tion. For example, recent mass screening and treatment
efforts have used rapid diagnostic tests (RDTs) with detec-
tion limits similar to microscopy (�200 parasites/ml) to find
and treat asymptomatic cases [8]. When these efforts failed
to curb subsequent malaria transmission, it was suggested
that more sensitive molecular diagnostics need to be
deployed [9,10]. Along these lines, a recent consensus
document by the Malaria Eradication Research Agenda
consultative group suggests that any parasitemia, no mat-
ter how small, represents potential for transmission and
therefore is a threat to malaria elimination efforts [11]. We
propose that pursuit of the most sensitive diagnostic may be
premature. Knowledge gaps are highlighted and recommen-
dations are made for further research to better understand
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Box 1. Heterogeneity of the asymptomatic malaria reservoir

The asymptomatic reservoir is composed of those with submicro-

scopic and microscopic parasitemia. In both high (Figure IA) and low

(Figure IB) transmission settings, asymptomatic infections far out-

number symptomatic infections [4–6]. However, in low transmission

settings, most of the asymptomatic reservoir is composed of

submicroscopic parasitemia [4,5,21–23]. The relative contribution of

submicroscopic and microscopic parasitemia to transmission is

unknown.

The contribution of the asymptomatic reservoir to malaria trans-

mission is mediated by the duration of infection, incidence of

gametocyte carriage, and is ultimately determined by mosquito

infectivity. These and other factors are likely to differ in low versus

high transmission settings and in microscopic versus submicroscopic

parasitemia within these settings (Table I).
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Figure I. The asymptomatic malaria reservoir.

Table I. The contribution of microscopic versus submicroscopic infections to the asymptomatic malaria reservoir

High transmission setting Low transmission setting

Microscopic Submicroscopic Refs Microscopic Submicroscopic Refs

Persistence of infectiona Days to months [13,14,16] Days to weeks?b [26–28]

Gametocyte carriagec 15–50% ? [19,20,37,54] 1–50%b ? [29,52,65]

Mosquito infectivityd 10–75% ? [53,54] 3–10% ? [52,53]

% Mosquitoes infectede 8–13% 0.5–3% [53,54,56,58] <1% to 1% <1%b [52,53,55,56]

aIf untreated.

bStudies cited included P. vivax in addition to P. falciparum.

cGametocytes visible by microscopy.

dThe proportion of individuals infective to mosquitoes.

eThe proportion of mosquitoes infected within a study population.
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how best to deploy active surveillance methods in the pur-
suit of malaria elimination.

The asymptomatic reservoir is heterogeneous in terms
of persistence and gametocyte carriage
The importance of asymptomatic malaria as a reservoir
rests on two key characteristics: duration of infection and
gametocyte density. Gametocytes are the sexual stage of
the parasite produced in infected human hosts which must
be ingested by mosquitoes for transmission to occur. Infec-
tions persisting for long periods of time means more
opportunities for a malarious individual to infect biting
mosquitoes, especially as gametocytes tend to appear late
in Plasmodium falciparum infection, on the order of 7–15
days after the first appearance of parasites in the blood
[12]. Infections with higher gametocyte densities are gen-
erally more infectious. Persistence of infection and preva-
lent gametocyte carriage have long been observed among
those with asymptomatic malaria in moderate to high
transmission settings in Africa. However, the asymptom-
atic reservoir in low transmission settings is more hetero-
geneous and does not necessarily share these same
attributes.

In moderate to high transmission settings in Africa, it
is common for asymptomatic individuals to harbor micro-
scopically patent (smear-positive) infections that last
184
from weeks to months [13,14] (Box 1). This phenomenon
has been explained by a form of acquired immunity that
keeps parasitemia and symptoms in check without
achieving complete clearance [15]. Longitudinal genotyp-
ing of a Ghanian cohort has confirmed that these are
persistent infections of the same strains, rather than
representing frequent reinfection, and that they persist
an average of 194 days [16]. Although gametocytes were
not measured in this study, it is likely that these individ-
uals were gametocytemic and thus infectious during much
of this time. In fact, asymptomatic microscopically patent
infections may be more infectious than clinical malaria.
An association between lack of fever and gametocyte
carriage has been observed in smear-positive children
in The Gambia and Nigeria [17,18]. Additional evidence
of the gametocyte production potential of microscopically
patent asymptomatics comes from two longitudinal stud-
ies in The Gambia and Kenya of untreated asymptomatic
infections [19,20]. In these studies, 11–25% were game-
tocytemic at baseline, whereas approximately 15–20% of
microscopically patent asymptomatics without baseline
gametocytes became gametocytemic over 4 weeks. Thus,
evidence from several studies show that asymptomatic
individuals with patent parasitemia are important reser-
voirs, but none of the studies looked for submicroscopic
infections.



Box 2. P. vivax hypnozoites represent a hidden reservoir and obstacle to elimination efforts

The unique biological characteristics of P. vivax present even more

challenges for elimination [1,74]. Perhaps most important is its

propensity to cause relapse. After a P. vivax-infected mosquito bites

an individual, a proportion of parasites establish a latent liver-stage

infection in the form of hypnozoites. Hypnozoites can remain dormant

in the liver for weeks or years until unknown triggers cause their

reactivation and entry into the bloodstream, where they cause clinical

relapse [75]. Remarkably, a single mosquito bite can lead to multiple

malaria relapses even when an individual has been adequately

treated with drugs that clear blood-stage parasites.

Several other biological characteristics of P. vivax make it is

plausible that in low transmission settings, many asymptomatic

individuals infected with P. vivax are gametocytemic and contribute

to transmission in a meaningful way. Perhaps due to frequent relapse,

most studies show that immunity to P. vivax is typically acquired

earlier in life than P. falciparum in settings where the species are co-

endemic [76]. It follows that asymptomatic P. vivax infection is

relatively common even in low transmission settings [4]. Additionally,

in contrast to P. falciparum gametocytes, P. vivax gametocytes arise

early in infection and accompany the majority of symptomatic

infections [12,32]. As with P. falciparum, submicroscopic gametocyte

densities have also been shown to lead to mosquito infection [42].

However, the converse conclusion – that mass screening and

treatment efforts can interrupt P. vivax transmission – is problematic.

This is because of the hidden P. vivax hypnozoite reservoir. Excluding

the prepatent liver stage of infection, the P. falciparum asymptomatic

reservoir is composed of those who are either smear-positive or

submicroscopic, whereas the P. vivax asymptomatic reservoir con-

tains an additional fraction of infected individuals without blood-

stream parasites but with dormant liver-stage hypnozoites. These

individuals harboring hypnozoites with potential for relapse cannot

be identified by any current diagnostic tests. Thus, one-time or even

periodic mass screen-and-treatment efforts will only detect infections

that have coincidentally reactivated at the time of screening. The size

of the hypnozoite reservoir is unknown in all but the most-studied

settings, but is likely to be substantial [77]. Perhaps this is why the few

examples of successful interruption of P. vivax transmission have

been associated with mass drug administration (MDA) [78,79] rather

than screen-and-treatment efforts.

Research recommendations

Ultrasensitive molecular tests might incrementally detect a larger

proportion of submicroscopic and potentially gametocytemic P. vivax

infections within a population, but their use is perhaps inconsequen-

tial for achieving elimination in the face of a much larger hidden

hypnozoite reservoir that remains intact. Lines of research that

evaluate frequent periodic screening, replace mass screening with

MDA with the aid of point-of-care G6PD testing, or uncover triggers of

relapse can inform active surveillance strategies for P. vivax.

However, for most areas where P. vivax is endemic, development of

a diagnostic test that can detect latent hypnozoite infections in

conjunction with a safe single-dose anti-hypnozoite drug and are

probably needed in order to make elimination a realistic goal

[11,74,80].
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The situation in non-African low transmission settings
is more complicated. First, in contrast to many African
settings, the majority of asymptomatic malaria infections
in areas such as the Amazon and Southeast Asia are
submicroscopic [4,5,21–23] (Box 1). Second, outside of
Africa, Plasmodium vivax is the most prevalent malaria
species and malarious areas are often co-endemic for P.
falciparum and P. vivax, with P. vivax presenting unique
challenges to elimination (Box 2). Finally, with lower levels
of transmission, acquired immunity is expected to be lower.
So at any given time point, an individual may be more
likely to be asymptomatic because he/she is either in the
process of resolving parasitemia due to treatment or might
be in the process of developing a symptomatic infection
[4,7,24,25]. Each of these major differences means that the
asymptomatic reservoir may vary in different settings with
regards to persistence, gametocyte carriage, and hence
mosquito infectivity and transmission potential.

The duration of infection among asymptomatics in low
transmission settings remains elusive (Box 1). The very
limited evidence suggests that a minority can persist for
several weeks, but the majority spontaneously clear. In
Brazil, 16 submicroscopic PCR-positive individuals with
asymptomatic P. vivax infection were followed for 30 days;
three-quarters were PCR-negative at 2 weeks, whereas the
remaining four remained PCR-positive at 30 days, with
none developing symptoms [26]. In serial cross-sectional
studies conducted in Colombia and Peru, approximately
half of smear-positive asymptomatic infections spontane-
ously cleared within 14 days in Colombia (13 out of 24) and
within 7 days in Peru (16 out of 30) [27–29]. As for the rest,
the majority remained asymptomatic at follow-up, with
half of those in the Peru study showing decreased para-
sitemia at day 7, and 25% of those in the Colombian study
remaining parasitemic at day 14. Overall, the duration of
untreated submicroscopic infections in low transmission
areas seems to be much shorter than asymptomatic P.
falciparum infections in Africa.

Even less is known about gametocyte carriage among
asymptomatic infections in low transmission settings. One
study in Peru limited to smear-positive malaria found that
an impressive 50% of P. falciparum and 22% of P. vivax
infections identified by active case detection harbored
gametocytes [29]. However, this was in the context of an
overall malaria prevalence of 63% in the at-risk zones that
were targeted. Otherwise, studies of gametocyte carriage
have mostly been limited to those enrolled in clinical trials.
Studies in Thailand have found that the greatest risk
factor for P. falciparum gametocyte carriage was visible
gametocytemia at admission [30], present in just 2.4% of
patients. Meanwhile, the average duration of gametocyte-
mia post-treatment in Thailand is significantly shorter
than in The Gambia [31]. For P. vivax patients in Thailand
and Indonesia, gametocyte carriage mirrored asexual
parasitemia, with high asexual parasitemia associated
with increased risk of gametocytemia during follow-up
[32]. These studies perhaps indirectly suggest that submi-
croscopic asymptomatic malaria does not have the same
infectious potential as asymptomatic malaria in Africa.

Studies of mosquito infectivity indicate a gametocyte
threshold detectable by microscopy
Gametocytes serve as an imperfect surrogate marker of
transmission potential. Experimental studies whereby
mosquitoes are fed blood-stage parasites, either by direct
skin feeding or via a membrane-feeding apparatus, and
subsequently dissected to look for malaria parasites
(oocysts in the mosquito midgut), represent a more direct
way for assessing human-to-mosquito infectious potential
[33–36].
185
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Figure 1. Submicroscopic gametocytemia and the mosquito infectivity threshold.

Mosquito-feeding assays, whereby Anopheles mosquitoes are fed blood-stage

parasites, either by direct skin feeding or via a membrane-feeding apparatus, and

subsequently dissected to look for malaria parasites, represent the standard way of

assessing human-to-mosquito infectious potential [33–36]. Depicted are

approximate curves of human-to-mosquito infectivity as a function of density of

gametocytes in the circulating blood drawn from data depicting natural human

malaria infections in West Africa (blue) [39,40] and children post-treatment in

Burkina Faso and Kenya (red) [41]. Although the range of the older series is much

greater, both demonstrate that the probability of mosquito infection is very low

until corresponding asexual parasitemias are detectable by microscopy.
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Individuals with higher gametocytemia are generally
more infectious to mosquitoes than those with low game-
tocytemia. Although children in Africa without smear-
detectable gametocytes are capable of infecting mosqui-
toes, infections occur in only a small minority of mosquitoes
[37,38]. By contrast, evidence from many studies suggests
a threshold of �100 gametocytes/ml, above which individ-
uals more consistently achieved infection in the majority of
mosquitoes, and cause mosquito infections with higher
oocyst burdens [39,40] (Figure 1). More recent data based
on modeling of mosquito membrane-feeding studies in
Burkina Faso and Kenya similarly found that although
4% of mosquitoes are infected at one gametocyte/ml, this
low infectivity rate does not increase meaningfully until
�200 gametocytes/ml are present [41] (Figure 1).

Comparable studies for P. vivax are few in number.
Although they suggest a positive correlation between ga-
metocyte density and frequency of mosquito infection, an
appreciable gametocyte threshold above which infection is
likely has not been defined [35,42,43].

Because the density of gametocytes relative to asexual
parasites in P. falciparum infection is usually low – fewer
than 5% in most settings [44] – a gametocyte threshold of
�100 gametocytes/ml approximately translates into an
overall parasitemia of 2000 parasites/ml, well into the
range of parasitemia detectable by microscopy. There
may be parasite and host factors beyond gametocyte den-
sity that are important determinants of human-to-mosqui-
to infectivity [12,45–47], and membrane-feeding assays
may still be an imperfect way of measuring human infec-
tiousness to mosquitoes [48]. But overall, these data argue
that submicroscopic infections may not substantially con-
tribute to the reservoir.
186
The potential role of submicroscopic malaria in
transmission has only been indirectly studied in high
transmission settings with prevalent gametocyte
carriage
Should all parasitemic individuals be considered current or
future gametocyte producers and, by implication, treated
[12,49]? Studies supporting this rationale have been largely
confined to children in Africa [37,38], a group where game-
tocyte carriage is expected to be more prevalent. Further,
although microscopically positive gametocytemic individua-
ls are clearly infectious to mosquitoes, some studies
highlighting the infectious potential of submicroscopic
gametocytemia can be difficult to interpret because they
do not specify whether such subjects also had submicroscopic
malaria (i.e., they could have had detectable asexual stages).

Among a random sample of 80 children in Burkina Faso,
approximately twice as many of those with microscopically
detectable gametocytes were infectious to mosquitoes com-
pared with those with gametocytes detectable only by
molecular methods: 68% with smear-detectable gameto-
cytes infected on average 13% of mosquitoes, whereas 32%
with submicroscopic gametocytes infected on average 2.3%
of mosquitoes [37]. Based on these numbers, it was esti-
mated that those with submicroscopic gametocytes con-
tributed to 24.2% of overall transmission because of their
greater prevalence in the population. However, <20% of
children in this study had submicroscopic malaria, so the
majority with submicroscopic gametocytemia probably
still had asexual parasites visible by smear. Another study
in Western Kenya also found that submicroscopic game-
tocytemia frequently resulted in mosquito infection [38].
However, the study recruited children who were 14 days
post-treatment, mostly with sulfadoxine–pyrimethamine-
containing regimens, which have been associated with
increased post-treatment gametocytemia [31,50,51].

Human-to-mosquito infectivity studies among asympto-
matics in Western Thailand also found individuals harbor-
ing submicroscopic gametocytemia that were infectious to
mosquitoes, but these were among microscopically patent
infections. Village-wide screening by microscopy resulted in
3.3% of individuals infected with P. falciparum by micros-
copy, 80% of whom were asymptomatic [52]. Among the 51
infected individuals in whom gametocytes were not visible,
five (9.8%) still infected mosquitoes, yielding low oocyst
burdens (average 1.2 oocysts/mosquito). Meanwhile,
13.5% of the P. vivax patients without smear detectable
gametocytes also infected mosquitoes. Overall, 10% of mi-
croscopically identified P. falciparum infections transmitted
their infection to mosquitoes in a membrane-feeding assay,
a rate similar to that seen in asymptomatics found by active
surveillance in two villages in Cameroon (9–13%) [53], but
much lower than that observed in a village sample in
Burkina Faso (>50%) and treated children in Western
Kenya (62%) [38,54]. These studies suggest that the under-
lying gametocyte prevalence in different settings can vary
widely and has an impact on the size of the infectious
reservoir [12,31].

Should PCR be used to screen for the transmission
reservoir? Epidemiologic data pertaining directly to this
question are scarce. In one study in the Brazilian Amazon,
15 asymptomatic carriers (11 P. vivax, three P. falciparum,
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one mixed P. falciparum/vivax) detected in a mass survey
who were microscopy-negative but PCR-positive were
recruited for mosquito-feeding experiments 2 months after
PCR diagnosis. Of 294 mosquitoes fed on their blood by
both direct and membrane feeding, two mosquitoes became
infected with one P. vivax oocyst each, yielding an infection
rate of 0.7% [55]. Comparing this to a mosquito infection
rate of 22% among 17 symptomatic carriers with micro-
scopically detectable parasitemia in the same study yields
an approximately 300-fold difference in infectivity between
submicroscopic asymptomatics and microscopic sympto-
matics in this setting.

Further epidemiological data gleaned from three hu-
man-to-mosquito infectivity studies were recently cited to
compare mosquito infectivity between submicroscopic and
microscopic asymptomatics. These showed between a 4-
and 16-fold difference in % mosquitoes infected among
submicroscopic versus slide-positive P. falciparum infec-
tions [56]. However, one of these studies involved African–
American malariotherapy patients with neurosyphilis who
were partially treated [57], another represents unpub-
lished data from Burkina Faso, and in the third study
from South Carolina in 1948 [58], the prevalence of sub-
microscopic carriers had to be estimated. All three studies
appear to be drawn from populations where the underlying
gametocyte prevalence is high: slide-detectable gameto-
cyte prevalence was �68% in the malariotherapy study
and 64% in the South Carolina study [57,58]. Gametocyte
prevalence in areas where malaria is now hypoendemic is
expected to be much lower. Thus, these 4- to 16-fold
infectivity ratios are only approximate estimates. These
estimates were used to suggest that submicroscopic car-
riers are the source of 20–50% of all human-to-mosquito
transmissions when transmission reaches very low levels
[56]. This conclusion, although based on the best available
evidence, underscores the need for more epidemiological
data, especially from low transmission settings where
malaria elimination efforts are underway.

Sparse data exist from elimination efforts using active
surveillance to guide practice
As countries pursue malaria elimination, interventions
ranging from focal or mass screening and treatment to
mass drug administration to targeted populations are
being tried [3]. Reactive case detection, whereby house-
holds within an established radius surrounding a symp-
tomatic positive index case are screened, is also
increasingly being used as a strategy that bridges passive
and active surveillance [59–61]. Many of these efforts are
applying molecular methods to find and treat asymptom-
atic infections [23,62–64]. But we found only two attempts
to measure gametocytes in such studies. In a school- and
population-based survey in the Melanesian Islands where
an overall malaria point prevalence of 2–3% was found by
both microscopy and PCR, gametocytes were detected in
15% of the P. falciparum positives and 4% of the P. vivax
positives [65]. In northwest Thailand, PCR of 475 individ-
uals in two villages as part of a mass screening revealed
eight cases with low density parasitemia later confirmed
by expert microscopists. None of these carried gametocytes
visible by smear, but submicroscopic gametocytes were not
measured [66]. Because infected individuals are treated,
the duration of these submicroscopic cases is also un-
known. The possibility exists that the submicroscopic
infections found by such surveillance efforts might not
significantly contribute to the transmission reservoir [3].

Research strategies
Because of the logistical difficulties of studying asymptom-
atic infections, much of what is known about asymptomatic
malaria in African settings has been extrapolated to set-
tings with much lower transmission where the asymptom-
atic reservoir mostly consists of those with submicroscopic
malaria. Studies of duration of infection, submicroscopic
gametocyte carriage, and gametocyte production potential
need to be carried out in submicroscopic infections in low
transmission settings where elimination is being consid-
ered (Box 3). This can be done, either by retrospective
molecular analysis of prior cohort studies where only
microscopy was used, or prospectively, in the context of
cohort studies and national surveys, in which microscopy-
negative but PCR-positive individuals are followed and not
treated unless they become symptomatic or develop patent
parasitemia. These studies are made more feasible by
available methods to measure submicroscopic gametocy-
temia from blood spots collected for PCR [67–71] but
require longitudinal follow-up, which can be challenging.

Going one step further, human-to-mosquito infectivity
studies can provide more direct information about the
transmission potential of submicroscopic infections (Box
3). Ideally, serial mosquito membrane-feeding studies using
local mosquito vectors would be conducted in those with
asymptomatic submicroscopic malaria identified by current
mass screening and treatment efforts. Although challenging
and tedious, these would more directly measure the poten-
tial impact that submicroscopic cases uncovered by active
surveillance have on transmission. Because such studies
still do not measure mosquito-to-human transmission or
overall malaria incidence, cluster randomized trials of dif-
ferent interventions, for example, mass screening and treat-
ment versus mass drug administration versus vector
control, remain important [72]. Incorporating different
types of molecular diagnostics (RDT, PCR, and LAMP) into
such studies would allow better definition of a diagnostic
threshold for elimination below which transmission is un-
likely, a practical goal that could guide allocation of
resources for diagnostics in malaria elimination programs.

The policy implications are important: if individuals
found by active surveillance to have submicroscopic malaria
turn out to have minimal transmission potential, perhaps
ultrasensitive PCR methods are not as important as an
emphasis on better coverage and follow-up of targeted
populations. If partially treated or presymptomatic individ-
uals make up a significant part of the asymptomatic reser-
voir, intensifying malaria treatment efforts to involve
periodic follow-up post-treatment as well as enhancing early
detection might be more cost-effective than screening large
populations.

Concluding remarks
As resources are allotted to elimination efforts, further
research is critical to better characterize the asymptomatic
187



Box 3. Outstanding questions and possible strategies to answer them

Research question Possible study designs

Submicroscopic parasitemia

What proportion of untreated/unrecognized

submicroscopic infections persist asymptomatically?

Retrospective molecular analysis of prior cohort studies where only

microscopy was used.

What proportion go on to become microscopically

patent and/or symptomatic?

How often do treated patients develop subsequent

submicroscopic parasitemia?

Retrospective molecular analysis of therapeutic efficacy studies.

Transmission potential of submicroscopic infections

What proportion of submicroscopic infections harbor or

produce gametocytes, and at what density?

Prospective molecular analysis incorporated into cohort studies or

national surveys.

Besides gametocyte density, what parasite or human host

factors affect human-to-mosquito infectivity?

In vitro membrane-feeding assays.

How commonly does submicroscopic versus microscopic

malaria in asymptomatics successfully infect mosquitoes?

How does this vary in different transmission settings and

in different mosquito vectors?

Vectorial capacity studies, estimates of entomological inoculation

rate (EIR), mosquito membrane-feeding studies in vitro, and from

patients in surveys and/or cohorts.

Diagnostic tests to detect submicroscopic parasitemia and estimate transmissibility

How sensitive does a diagnostic test need to be to identify

all those in the infectious reservoir?

Comparative analysis of diagnostic tests incorporated into cohort

studies and mass surveys, paired with malaria seroprevalence surveys.

How large is the hypnozoite reservoir in P. vivax-endemic

areas, and how can it be measured?

Studies to identify surrogate markers of latent P. vivax infection.
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reservoir in settings where elimination is being pursued
and the factors that may or may not make submicroscopic
infections important for continuing transmission. In par-
ticular, a key operational question is, ‘how sensitive does a
diagnostic test need to be to identify all of those who make
up the infectious reservoir?’ Because a gametocyte–mos-
quito infectivity threshold has been established for P.
falciparum in African settings, this can act as a guide.
Nevertheless, determining the gametocyte carriage poten-
tial of individuals followed without treatment is also key,
especially for those with submicroscopic parasitemia. With
regards to infection with P. vivax, the present inventory of
tools is inadequate to achieve elimination without a diag-
nostic marker for latent hypnozoite infection or introduc-
tion of a universally safe antimalarial that can clear
hypnozoites.

Presently, the lack of evidence for or against a substan-
tive role of submicroscopic malaria for transmission makes
the ethics of treating asymptomatic and submicroscopic
parasitemia unclear and dependent on the risk–benefit
ratios of the treatment and/or prevention strategies being
implemented. Untreated individuals may go on to develop
clinical disease at rates that are currently unpredictable and
infect others in their households or communities. Alterna-
tively, infection could clear irrespective of treatment that
might cause adverse effects in patients. If the treatment is
ineffective, they may continue to harbor persistent, increas-
ingly drug-resistant parasites post-treatment. The spread of
infection, although thought by some to be from a widespread
reservoir of asymptomatic individuals, may in fact be limit-
ed to only a relatively small pool of patients with microscop-
ically patent infection. The sporadic and focal nature of
malaria transmission argues for the latter hypothesis. How-
ever, even if transmission is focal, and limited to a few
carriers, the potential beneficial effects of mass treatment
to provide prophylaxis and disrupt transmission must
be carefully considered [73]. Longitudinal studies that
188
incorporate molecular analyses and mosquito membrane-
feeding techniques will help tease out some of these out-
comes and contribute to our understanding of how best to
target the asymptomatic malaria reservoir.
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